Forward-Looking Statements

During the course of this presentation, we may provide projections or other forward-looking statements regarding future events and/or future financial performance. Forward-looking statements and projections can be identified by the use of words such as “expect”, “anticipate”, “believe”, and “estimate”. Undue reliance should not be placed on such forward-looking statements and projections, which speak only as of the date they are made. We undertake no duty to update such forward-looking statements. Actual events and results may differ materially from those in the forward looking statements and are subject to risks and uncertainties. We refer you to the documents the Company files from time to time with the Securities and Exchange Commission, specifically, the Company’s last filed Form 10-K. These documents identify important risk factors that could cause actual results to differ materially from those contained in our projections and other forward-looking statements.

Use of non-GAAP Financial Information

This presentation contains both non-GAAP and GAAP numbers. We provide a reconciliation between non-GAAP and GAAP numbers in the appendix to this presentation, as well as on our website at investor.xilinx.com.

© Copyright 2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, Vivado, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.
Agenda

Building the Adaptable Intelligent World
Victor Peng, President & CEO

Accelerating Growth with Shareholder Return
Lorenzo Flores, Executive Vice President & CFO

Q&A

Reception
Building the Adaptable, Intelligent World

Victor Peng, President & CEO
Three Big Trends

Explosion of Data

Dawn of AI

Computing After Moore’s Law
The Need for Adaptable Intelligence

Everything Intelligent & Connected

Deployed at Global Scale

Dynamic Needs & Rapid Innovation
Transformation Through Innovation

- **1980**: World’s First Virtex FPGA
- **1990**: First Virtex FPGA
- **2000**: Virtex-2 Pro
- **2010**: First 3D FPGA & HW/SW Programmable SoC
- **2020**: First MPSoC & RFSoC

ACAP
Transformation Drives Larger & Faster Growing TAM

- New, larger TAM driven primarily by Data Center & RFSoC opportunities
- Enables step up in long term revenue growth rate

FY19
- Prior TAM: $43B
- Additional TAM: $17B
- Total TAM: $60B (7% CAGR)

FY23
- Prior TAM: $54B
- Additional TAM: $24B
- Total TAM: $78B (10% CAGR)

Source: IHS & Xilinx estimates
Strategy for Enabling the Adaptable World
Our Strategy

1. Data Center First
2. Accelerate Growth in Core Markets
3. Drive Adaptive Computing
New End Market View for Revenue

FY18 Revenue

- Reclassified revenue categories by end market to better group businesses with similar growth drivers
- New mapping provides greater transparency into Data Center and Test Measurement & Emulation (TME) revenue trends

Note: Data Center and TME includes Cryptocurrency
Total SAM

Source: IHS & Xilinx estimates

FY19

$14B

$2.3B

$2.9B

$3.7B

$5.2B

13% CAGR

FY23

$23B

$6.6B

$4.7B

$4.9B

$7.3B

30% CAGR

Data Center & TME

Broadcast, Consumer & Auto

Industrial and A&D

Communications

13% CAGR

7% CAGR

9% CAGR

Source: IHS & Xilinx estimates
Data Center First
Data Center TAM

$26B Market by FY23

> Heterogeneous Computing post Moore’s Law
> Exponential Data Growth
> Dawn of AI
Data Center SAM

> Need for adaptable intelligence driven by the end of Moore’s Law and diverse and evolving workloads

> AI/ML intersecting traditional workloads, magnifying the need to adapt at both the hardware and software level

> Exponential data growth drives the need for computational storage / memory

Note: Does Not Include TME
Source: IHS & Xilinx Estimates
Data Center Strategy

End Customers and OEM/ODM Partners

Developers

Platform

Frameworks Libraries Firmware
Data Center Platform

Framework, API, Python/Java/C++ Programmability

Compute Platform
- TensorFlow
- FFMpeg
- ML
- Video
- Compute Shell Firmware & Runtime
- 20nm FPGA

Storage Platform
- NVMe-OF
- Compression
- Key Value
- Storage Shell Firmware & Runtime
- 16nm FPGA

Network Platform
- ROCE
- Encryption
- Openstack
- Network Shell Firmware & Runtime
- 16nm MPSoC

End Customers

Software Frameworks
- TensorFlow
- NVMe-OF
- SDN / NFV

Libraries, Compilers, Middleware
- FFMpeg
- ROCE
- Openstack
- OVS

Firmware
- ML
- Compression
- Encryption

Integrated Development Environment
- Compute Shell Firmware & Runtime
- Storage Shell Firmware & Runtime
- Network Shell Firmware & Runtime

Hardware
- 20nm FPGA
- 16nm FPGA
- 16nm MPSoC
- 7nm ACAP

© Copyright 2018 Xilinx
Data Center Developer Ecosystem

End Customers

100% QoQ Growth of Published Applications in FY18

Hundreds of Developers Trained Every Quarter

1500+ Developers Trained by Year End

LIFE SCIENCES
FINANCIAL
VIDEO
DATABASE

MACHINE LEARNING

Framework, API, Python/Java/C++ Programmability

Compute Platform
Storage Platform
Network Platform

DEVELOPERS
Data Center Customers and Use Cases

End Customers & OEM/ODMs

<table>
<thead>
<tr>
<th>Compute Use Cases</th>
<th>Storage Use Cases</th>
<th>Network Use Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperscale / Public Cloud</td>
<td>Enterprise / Private Cloud</td>
<td>Telco Cloud / Edge</td>
</tr>
<tr>
<td>High Performance Computing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ML Inference
- Database / Big Data Analytics
- Compression
- Key Value / Database / Big Data Analytics
- Low Latency Message Passing
- Collective Offload

Compute Use Cases
- Search
- Risk Modelling
- Fraud Detection
- Video / Image Processing
- ML Inference
- Compression
- Key Value / Database / Big Data Analytics
- Video / Image Processing
- Genomics
- Weather Forecast Sim

Storage Use Cases
- ML Inference
- Compression
- Key Value / Database / Big Data Analytics

Network Use Cases
- Virtualization
- Low Latency TCP
- NFV
- Monitoring / Security
- Low Latency Message Passing
- Collective Offload

CUSTOMERS & OEMS
<table>
<thead>
<tr>
<th>Use Case</th>
<th>Xilinx Platforms</th>
<th>GPU</th>
</tr>
</thead>
</table>
| Compute | ✓ Low batch performance
 ✓ Low / variable precision performance
 ✓ Flexible datapath/memory for power efficiency
 ✓ Hardware & software programmable | × Parallel architecture poor fit for low-batch ML
 × Fixed and inflexible datapath and memory
 × SIMD architecture → inflexible & power hungry | ✓ Optimized for high precision floating point |
| Storage | ✓ Processing near memory / storage
 ✓ Flexible low latency in-line processing
 ✓ Adaptable parallel memory hierarchy | Poor Fit |
| Networking | ✓ Optimization of latency and efficiency
 ✓ Rich I/O, flex datapath for inline processing
 ✓ Power efficient, flexible datapath/memory | Poor Fit |
FPGA as a Service: Proliferating Application Development

Clear #1 Position in FaaS
Milestones

- AWS expansion: 4 regions, 26 applications and growing, >400 developers
- Alibaba F3 GA launched
- FaaS wins with Huawei, Baidu, Tencent
Xilinx FPGA Platforms Optimal for ML Inference

Application / Use Case
- Image Classification
- Speech Recognition

Developer Ecosystem
- Bitfusion
- DEEPHi
- edico genome
- MAXELER Technologies
- InAccel
- Mipsology

Perf/Watt Leadership (16nm)
- Low batch size
- Reduced precision
- Pruning

Milestones
- Xilinx & Partner Solutions deployed in AWS F1
- Deployed in 2 of 3 China Hyperscalers
Delivering Greater Performance/Watt than Competing ML Platforms

ML Inference Throughput Comparison\(^1\)

<table>
<thead>
<tr>
<th>Performance (Images/Second)</th>
<th>Nvidia P4 (TensorRT3)</th>
<th>Xilinx VU9P (XDNNv1)</th>
<th>Xilinx VU9P (XDNNv3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.6x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Efficiency (Images/J)</th>
<th>Nvidia P4 (TensorRT3)</th>
<th>Xilinx VU9P (XDNNv1)</th>
<th>Xilinx VU9P (XDNNv3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.2x</td>
</tr>
</tbody>
</table>

Xilinx 7nm ACAPs Will Extend Performance/Watt Lead

1: Sub-7ms Sub-75W GoogLeNet v1 ML Inference Throughput
Note: Nvidia Measurements as Published for sub-7ms latency in Nvidia White Paper “Nvidia Deep Learning Platform – Giant Leaps in Performance and Efficiency for AI Services”
2.5x Latency Advantage in Speech-to-Text ML Inference

End-to-End Latency
(AWS Instance Comparison)

CPU + Nvidia P4: 42 ms
CPU + Xilinx VU9P: 17 ms

2.5x Latency Advantage
Growing Database Acceleration Ecosystem and Early Milestones

Application / Use Case
- Storage to FPGA to HOST
- Raw data to filtered data

Developer Ecosystem
- Aon
- CME Group
- Maxeler Technologies
- Elasticsearch
- Ryft
- Xilinx

Milestones
- Ryft delivers 90x speedup on Log Analysis
- Alibaba published data highlights 1.6x advantage vs. Intel Xeon
- Xilinx Postgres published on AWS F1
 - Acceleration through offloading scanning operations

1: White Paper "When Database Meets the FPGA" highlights 1.6X transactions/sec advantage vs. Xeon E5 2682 v4 2.5GHz
Building Momentum in Computational Storage / Memory

Application / Use Case

<table>
<thead>
<tr>
<th>Moving Data to Compute</th>
<th>Moving Compute to Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage (Data Management)</td>
<td>Compute (Data Processing)</td>
</tr>
<tr>
<td>Storage (Data Management)</td>
<td>Compute (Data Processing)</td>
</tr>
</tbody>
</table>

Developer Ecosystem

- AON
- APACHE HBASE
- CME Group
- EIDETICOM
- MAXELER TECHNOLOGIES
- RYFT
- ScaleFlux
- XILINX
- Spark
- Postgres
- Elasticsearch

Milestones

- Computational memory design-win with Tier1 memory vendor
- NVMe over Fabrics design-win with Tier-1 customer
- Delivering 1.7-3.6x application performance w/computational SSDs
Data Center Growth Acceleration with Board Products

- Expanding board offerings to accelerate adoption with Data Center customers
- Enables customers to drive to faster deployment and revenue
- Contributes to doubling of Data Center revenue opportunity to $500-$600M by FY21
- Stay tuned for more details to be released at Xilinx Developer Forum (XDF) in Oct’18
Accelerate Growth in Core Markets
Our Core Vertical Markets

- Automotive
- Wireless Infrastructure
- Wired Communications
- Audio, Video, & Broadcast
- Aerospace & Defense
- Industrial, Scientific & Medical
- Consumer
Core Markets SAM

FY19
- Communications
- Industrial and A&D
- Broadcast, Consumer, and Auto

FY23
- Communications
- Industrial and A&D
- Broadcast, Consumer, and Auto

Source: IHS & Xilinx estimates

© Copyright 2018 Xilinx
Xilinx Core Market Growth Enabled by Zynq SoC Platforms

Going Deep and Broad with Highly Sticky Platform Solutions

60+ Solution Platforms Available

15,000+ Dev Kits Sold

200+ Ecosystem Partners

3,600+ Design Wins

60% Y-Y Revenue Growth FY18

Ecosystem of Tools & Software

Software

Tools

Rapid Development

Reference Designs

Boards

© Copyright 2018 Xilinx
Select Core Markets for Discussion

Communications
Automotive
Industrial, Scientific & Medical
Aerospace & Defense
Communications Market

Communications

Automotive

Industrial, Scientific & Medical

Aerospace & Defense
Communications SAM and Xilinx Growth Drivers

Three Big Drivers
- Exploding bandwidth demand
- Networks becoming more intelligent
- Emergence of Mobile Edge Compute and Telco Cloud

5G is Accelerating the Evolution
- Both wired and wireless overhaul starting in CY2019
- Production systems are expected in CY2020

SAM is expanding as networks get overhauled
- Massive MIMO is increasing radio IC content
- Mobile Edge Compute/Telco Cloud creates new opportunity for acceleration and HW adaptability
- Intelligent networks drive need for adaptable ML

Source: IHS & Xilinx Estimates
Enabling End-to-End Communications Infrastructure Upgrades
Delivering Solutions for End-to-End 5G Architectures

Massive-MIMO Radio
5X More IC Content

Baseband
FPGA/ACAP for Acceleration

Wireless Backhaul
RFSoC All-in-One Solution

Fronthaul

Backhaul
Case Study: Enabling Massive-MIMO Radios for Tier-1 Wireless Network Provider

Customer Problem
> Implementing 64x64 Massive MIMO requires up to 16x more IC components

Xilinx Solution & Differentiation
> RFSoCs with integrated ADCs and DACs
> IC count reduced from 24 to 4
> Significantly less power and footprint

Xilinx System Content Increased by Over 35%

- ~30mm x 30mm
- 64x RF DAC
- 64x RF ADC
- Radio Front-End

- 50% Less Power
- 77% Smaller Footprint
Case Study: Network Intelligence Delivered to Barefoot Networks

In-Band Network Telemetry

Customer Problem
“45% cost within our network is to protect against 5% failures”
– Mazen Khaddam, Principal Architect, Cox

Xilinx Solution
> Network telemetry & monitoring with FPGA/ACAP
> Ultimately automate the entire network with Machine Learning and AI

Intelligent and Adaptable Networks Are The Future
ACAP is the only platform to combine ML acceleration and network acceleration in a single silicon device
Automotive Market

Communications

Automotive

Industrial, Scientific & Medical

Aerospace & Defense
Automotive SAM and Xilinx Growth Drivers

Auto Market Expansion Drivers
- Global Demand for Safety and Automation drive ADAS and Autonomous Driving
- Advanced Driver Assistance System (ADAS) features becoming ubiquitous
- Increasing need for low latency, power efficient Edge Computing

Xilinx Opportunity
- Deploy Zynq SoCs as scalable platform across a broad base of applications
- FY19/20 revenue transitions from older products to new products

Source: IHS & Xilinx Estimates
Case Study: Surround View Opportunity for Tier 1 Supplier

Problem (Tier 1 Auto Supplier)
> Deploy multiple generations of differentiated vision based ADAS systems
> Adapt to evolving sensor technologies
> Minimize development cost within strict power envelopes

Xilinx Solution (Zynq SoC Platform)
> Delivers scalable platform for diverse feature sets
> Flexibility for differentiation
> Power efficiency for stringent power requirements
Industrial, Scientific & Medical

Communications Automotive Industrial, Scientific & Medical Aerospace & Defense
Industrial, Scientific & Medical SAM and Xilinx Growth Drivers

IIoT accelerates ISM SAM growth
> Connectivity & communication between devices
> Real time control and intelligence at the edge
> Cyber security and safety

Xilinx Opportunity
> Deploy Zynq SoCs as scalable platform across a broad base of applications
> Adaptable platform enables IIoT intelligence

Source: IHS & Xilinx Estimates
Scalable Industry 4.0 Edge Platforms Built on Xilinx SoCs

Problem
> Develop a scalable platform across multiple Industry 4.0 products
> Minimize development cost, especially software development

Xilinx Solution
> Zynq SoC portfolio is the only scalable platform enabling reuse of software stack
> One embedded platform can be leveraged across low end, mid-range and premium product lines

Smart Factory End-Systems Enabled by Zynq SoC

Programmable Logic Controller
Human Machine Interface
Motor & Motion Control (Robotics)
Smart Vision

Smart Factory End-Systems Enabled by Zynq SoC
Aerospace & Defense SAM and Xilinx Growth Drivers

$1.5B \rightarrow 6\% \text{ CAGR} \rightarrow $1.9B

A&D SAM Growth Drivers

- Increasing global Defense budgets
- Existing major Defense programs continue
- Faster time-to-mission in response to new threats well suited for programmable applications

Xilinx Opportunity

- Deployment of adaptive platforms
- New RFSoC provides SAM expansion (data converters) and market share gain

Source: IHS & Xilinx Estimates
Case Study: Adaptive Radar

Problem
- Radar spectrum requirements change faster than most radar programs can adapt
- RF data converters considered biggest bottleneck to a universal, modular radar platform

Xilinx Solution
- RFSoC enables usage of same module in different radar applications
- Adaptable to change with new requirements
- Enables rapid development, best-in-class SWAP

SAM Expansion by Addressing New Radar Trends
Drive Adaptive Computing
Benefits of an Adaptive Compute Acceleration Platform

Dynamically Adaptable to Workloads

Exponential Increase in Acceleration

Software Programmable

Custom acceleration for any workload – in milliseconds
ACAP for Multiple Markets

Breadth of Technologies on a Single Platform

Cloud Compute & Acceleration
> Software centric programming model
> Dynamic workload acceleration

Breakthrough Networking Bandwidth & Capacity
> Multi-terabit throughput
> Evolutional leap in logic capacity

RF and Wireless
> Next Generation RF bandwidth
> Exponential increase in signal processing

Edge Compute & Autonomous Systems
> Embedded processing with ML acceleration
> Real-time with multi-level safety & security

© Copyright 2018 Xilinx
7nm Everest Family – Industry’s First ACAP

Dynamically Adaptable to Workloads
> Adapts with programmable fabric
> Dynamic reconfiguration for diverse applications

Exponential Increase in Acceleration
> 20x AI compute capability\(^1\)
> 4x communication bandwidth for 5G\(^2\)

Fully Software Programmable
> Network-on-Chip & SW/HW accelerations engines
> Ease-of-programming for both HW and SW developers

1: Based on NIC / Data Center comparison with 16nm Virtex UltraScale+
2: Based on Massive-MIMO 16x16 radio implementation comparison with 16nm RFSoC devices
Project Everest

Timeline

> Early software tools delivered to strategic customers

> 1st silicon tape out Q4 2018

> Customer shipments in 2019
Strategy for Growth and Transformation

1. Data Center First
 - ML inference, database, video, storage, network, ~$1B in revenue by FY23

2. Accelerate Growth in Core Markets
 - MPSoC and RFSoC platforms, broad strength, 5G and Auto ramp 2020

3. Drive Adaptive Computing
 - Everest ACAP platforms: breakout ease of use, performance & adaptability
Accelerating Growth with Shareholder Return

Lorenzo Flores, Executive Vice President and CFO
Consistent Execution → Excellent Financial Results

<table>
<thead>
<tr>
<th></th>
<th>FY17 Guidance</th>
<th>FY17 Execution</th>
<th>FY18 Guidance</th>
<th>FY18 Execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>~4-8%</td>
<td>6% ✓</td>
<td>~4-8%</td>
<td>8% ✓</td>
</tr>
<tr>
<td>Gross Margin</td>
<td>~68-70%</td>
<td>70% ✓</td>
<td>~68-70%</td>
<td>70% ✓</td>
</tr>
<tr>
<td>Operating Expenses*</td>
<td>$930-$950M</td>
<td>$942M ✓</td>
<td>$990-1,010M</td>
<td>$1,004M ✓</td>
</tr>
<tr>
<td>Operating Margin*</td>
<td>30%</td>
<td>30% ✓</td>
<td>30%</td>
<td>31% ✓</td>
</tr>
</tbody>
</table>

* FY18 Operating expenses and Operating Margin adjusted for executive transition costs
Disciplined Financial Model

Expanded Gross Margins

Delivered 30% Op Margin

Shifted Funding from SG&A to R&D
Product Leadership Driving Revenue Growth

Advanced Product Revenue $
Product Leadership → Multi-Market Strength

FY18 Revenue Growth

- $431
 - DC ecosystem building
 - TME record sales
 - Crypto growth
 - Increase by 27%
- $388
 - Broadcast solid growth
 - Automotive sales increase
 - Increase by 3%
- $649
 - Industrial record sales
 - A&D record sales
 - Increase by 19%
- $881
 - Weaker communications environment (7%)

FY17 Rev $2,349M

FY18 Rev $2,539M

Data Center and TME

Broadcast, Consumer, Auto

Industrial and A&D

Communications

˃ DC ecosystem building
˃ TME record sales
˃ Crypto growth

˃ Broadcast solid growth
˃ Automotive sales increase

˃ Industrial record sales
˃ A&D record sales

˃ Weaker communications environment (7%)

FY18 Rev $2,539M

© Copyright 2018 Xilinx
Industry-Leading Free Cash Flow Margin

88th percentile within S&P 500
97th percentile within SOXX

Source: Factset, Xilinx

Cash Flow Margin presented is non-GAAP and defined as (Operating Cash Flow less Capital expenditures)/TTM sales. Complete reconciliations can be found in the appendix of this presentation and at investor.xilinx.com
FY19 and Beyond: Accelerating Growth with Shareholder Return

Driving Profitable Growth

Reap the harvest of leadership
> Advanced product growth
> Market expansion
> Gross margin management
> Increasing operating leverage over time

Continued disciplined organic investments

Accelerate ecosystem investments

Strategic M&A

Shareholder Returns

Maintain profitability focus

Direct cash return history
> 100% of OCF returned in past 5 years
> 13th year of dividend growth
> Share count reduced by 10 million in FY18

Manage direct returns in context of inorganic activities
> Remain committed to dividend
> New $500M buyback authorization used opportunistically
Investing in Ecosystem to Accelerate Revenue Growth

FY18 and FY19 YTD Activity

<table>
<thead>
<tr>
<th>Focus Area</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML</td>
<td> </td>
</tr>
<tr>
<td>Video</td>
<td> </td>
</tr>
<tr>
<td>Data Analytics / Acceleration</td>
<td> </td>
</tr>
<tr>
<td>Network Acceleration</td>
<td> </td>
</tr>
<tr>
<td>Storage Acceleration</td>
<td></td>
</tr>
</tbody>
</table>

> Integral element of growth strategy
> Significant increase in number of investments

refers to undisclosed investments

© Copyright 2018 Xilinx
Reaping the Harvest of Leadership: Advanced Product Growth

Advanced Product Revenue $

FY18-19 >25% Growth

20%+ CAGR

FY19E

FY23E

28nm 20nm 16nm 7nm
FY19 Financial Guidance

<table>
<thead>
<tr>
<th>Sales</th>
<th>$2,700 – 2,800M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Margin</td>
<td>~68 – 71%</td>
</tr>
<tr>
<td>Operating Expenses</td>
<td>$1,080 – 1,120M</td>
</tr>
<tr>
<td>Tax Rate</td>
<td>~10 – 14%</td>
</tr>
<tr>
<td>Share Count</td>
<td>~258M</td>
</tr>
<tr>
<td>Cap Exp</td>
<td>$45 – 50M</td>
</tr>
</tbody>
</table>

End Market Outlook

<table>
<thead>
<tr>
<th>Comms</th>
<th>DC & TME</th>
<th>Ind & A&D</th>
<th>BCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3 to -11%</td>
<td>+25 to 29%</td>
<td>+7 to 11%</td>
<td>+11 to 15%</td>
</tr>
</tbody>
</table>

- **Comms**: -3 to -11%
- **DC & TME**: +25 to 29%
- **Ind & A&D**: +7 to 11%
- **BCA**: +11 to 15%

- Continued strong gross margin focus
- Operating Income growth high single digits
- Incorporates Tax Cut and Jobs Act 2017 impact
- Flat with FY18
Beyond FY19: Accelerating in Data Center and Core Market Growth

Relative End Market Growth and Revenue Scale
Xilinx is Growing and Transforming

From FPGAs to Platforms...

> Data Center and Core Markets drive accelerated growth

> Drive growth in profitability with disciplined financial model

> Driving broader inorganic activities

> Setting the stage for the Adaptive Computing breakout
Q and A
Appendix
Free Cash Flow Reconciliation

<table>
<thead>
<tr>
<th>(in thousands)</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash flows from operations (GAAP)</td>
<td>$835,671</td>
<td>$810,442</td>
<td>$746,255</td>
<td>$934,131</td>
<td>$820,027</td>
</tr>
<tr>
<td>Capital expenditure</td>
<td>$(44,865)</td>
<td>$(29,619)</td>
<td>$(34,004)</td>
<td>$(72,051)</td>
<td>$(49,918)</td>
</tr>
<tr>
<td>Free cash flows (non-GAAP)</td>
<td>$790,806</td>
<td>$780,823</td>
<td>$712,251</td>
<td>$862,080</td>
<td>$770,109</td>
</tr>
<tr>
<td>Revenues *</td>
<td>$2,382,531</td>
<td>$2,377,344</td>
<td>$2,213,881</td>
<td>$2,356,742</td>
<td>$2,467,023</td>
</tr>
<tr>
<td>Free cash flow as a percentage of revenue (non-GAAP)</td>
<td>33.19%</td>
<td>32.84%</td>
<td>32.17%</td>
<td>36.58%</td>
<td>31.22%</td>
</tr>
</tbody>
</table>

* Revenues for fiscal 2014 - 2016 were presented under ASC 605 and revenues for fiscal 2017 - 2018 were presented under ASC 606
Operating Margin Reconciliation

(in Millions)

<table>
<thead>
<tr>
<th></th>
<th>$</th>
<th>% of revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating income - GAAP</td>
<td>$745</td>
<td>29.3%</td>
</tr>
<tr>
<td>Executive transition costs</td>
<td>33</td>
<td>1.3%</td>
</tr>
<tr>
<td>Operating income - non-GAAP</td>
<td>$778</td>
<td>30.6%</td>
</tr>
</tbody>
</table>